SGID Silkworm Genome Informatics Database
Gene
KWMTBOMO14368  Validated by peptides from experiments
Pre Gene Modal
BGIBMGA013297
Annotation
PREDICTED:_ryanodine_receptor_44F_isoform_X18_[Bombyx_mori]
Full name
Ryanodine receptor       + More
Ryanodine receptor 2      
Ryanodine receptor 3      
Ryanodine receptor 1      
Alternative Name
Ryanodine receptor 44F
Cardiac muscle ryanodine receptor
Cardiac muscle ryanodine receptor-calcium release channel
Type 2 ryanodine receptor
Cardiac muscle-type ryanodine receptor
Brain ryanodine receptor-calcium release channel
Brain-type ryanodine receptor
Type 3 ryanodine receptor
Skeletal muscle calcium release channel
Skeletal muscle ryanodine receptor
Skeletal muscle-type ryanodine receptor
Type 1 ryanodine receptor
Location in the cell
Cytoplasmic   Reliability : 1.723 Nuclear   Reliability : 2.296
 

Sequence

CDS
ATGGATGCCCTTGGCGGGGAGACGACATTCGCAGATGTCCAAGGCGATAATTTCGTGCCGGCTTGCACACTTGGGGTCGGGCAGAAGGCCAGGTTGACATACGGACAAGACGTGAACACTCTAAAATACTTCACGACCTGCGGTCTTCAAGAGGGATACGAACCTTTCTGTGTCAACATGAAAAGAGATGTCACTCATTGGTACACAAAAGACCAGCCCATCTATGAAAACACAGATGAAATGGCCGACACAAGAATCGATGTAACCAGGATACCAGCTGGATCAGAGACTCCACCGTGTCTGAAAATATCTCACAACACATTCGAAACGATGGAAAAAGCCAACTGGGAGTTTCTGCGTTTGTCTCTACCGGTCATTTGCCATTCGCAGTTTATAGATGAATCAGAGAAAGCACGACGCTGGGTAGAGATTAAGGAACGTCAGCAGATCCTCATGAAAGAGGCCACCGAAGCTCAGATACCAGCTCACATCGACCAAATCATGAGGAGTGGATTTACTATGAATGACATAAAAGGTCTGCACTACGAAGACAATCAAGAAGAGATCCAGAGCTCCAAAGTGAAACGTCAGCCGTCCAGACCACCACGACAACAAGTAAATGGAATTCATCGGTCCACCAGTGAAGCAGAAATGGCGAAATATGAATTAGGCGCTCAAACTTTAGCGCCAGATGAGAAGAAAGATAAAAGAGGACGTTCTCCTTTCAAATTTTTCAAGAGCAAACGTGCCGAGAGCAGTGATCGCGCCAAAATCCGCAAGTCCAAAACTCCAGATCCCTTCAGTGACACCGAACTGTCTCCTGACAGGGGGACGAAGAGACCCAACCCTCAGATCAAGGTGTCTCAGCCGAACCAAAGGTATAATAATGGCACGCAGCCCCGAGCAAGCAGACCCAACTTGTATGGAAGTCAAAGCGGTCTTAACATGGCGACTCCAACTCAGGAGAGAAAGCAGTTAATGACAACCACGAATCTGTCGGCCGCTGCGACGGAGACCGTCGGCAACGAGATATTCGACTCCGAGTGCTTAAAGCTCATTAATGAATACTTCTACGGGGTCAGAATATTCCCTGGCCAAGACCCAACTCACGTGTACATTGGGTGGGTGACCACTCAGTACCATCTGCACTCGAAAGACTTCAACCAAAACAAGGTGATGAAGTCATCAGTCATCATCACCGACGACTACGACCGGGTCATTGAAAGCGTAAACCGTCAGTCCTGCTACATGGTGCGAGCTGATGAGCTTTACAACGAAGTGATGGCGGAAGCTACGGCCAAGGGCGCGTCCCAAGGAATGTTTATTGGATGTTCAGTGGACACTTCCACCGGGACTGTAGCGTTCACATGCGAGGGAAAAAGCACTAGCATTAAATTCAAGATGGAGCCAGAGACCAAATTATTCCCGGCGATCTTCGTCGAAGCGACATCGAAAGAGATCCTCCAGATAGAGCTGGGCAGGTCTCCGACAAGTCTACCGCTAAGTGCCGCGGTGCTACCAACGAGCGACAAGCACGTCACGCCGCAGTTCCCGCCCAGGCTGAAAGTGCAGTGTCTCAAGCCGCATCAGTGGGCTAGAGTACCAAATTCATCGTTGCAAGTGCACGCTCTAAAGCTGTCTGACATACGAGGCTGGTCGATGCTGTGCGAAGACGCAGTTTCTATGCTCGCATTGCACATACCAGAGGAAGACCGGTGCATCGACATATTGGAGCTTATCGAAATGGATAAGCTGTTGAGCTTCCACTCGCACACCCTCACGTTATATGCAGCTTTATGCTACCAAAGCAACTACAGGGCTGCCCACGCTTTATGCCAGCATGTAGATCAAAAGCAATTGTTATACGCCATCAAGTCCCAGTACATGTCCGGGCCACTGCGCCAGGGTTTCTACGATCTACTCATTGCTCTACATTTAGAATCGCACGCAACCACGATGGAAACCTGCAAGAATGAATTTGTGATACCCCTGGGGCCGGAGCTGAAGGTTCTGTACGACGAGCCCGACATGGGGCACAGCCTCCGCTCGCTGCAGACGGAGAGCGTCAGACCGCAGTTGGAAATGACCGATATCACGGAAAAAAGTATAATGGACATAAGTAATCTGTACTCTCCGAAGTTCCCTCTGGAAGTTGTCCGTGAATTCGTGATGCAGGCACTCGCGGAGGCCGTGGAAACTAACCAGGTCCACAACAGAGATCCGGTCGGTGGAAGCAACGAGAATCTCTTCCTGCCGCTAATTAAGCTCGTGGACCGTCTACTCCTGGTCGGAAAAATGCGCGACGAAGACGTTGAGAAACTTCTCATCATGATCAACCCCGAGACCTGGGATCCAACGTTCAATAAAGAAGGCAAAGACGAACACCGAAAAGGACTTCTTCACATGAAAATGGCTGAAGGCGCTAAACTGCAAATGTGTTATTTGCTCCAACATCTGAACGACATGCAGCTACGTCACAGGGTTGAATCTATAGTGGCTTTTGCACATGACTTTGTCGGGGACCTGCAGTCCGACCAGTTGAGACGCTACACTGAGATCAAGCAGTCAGATTTACCGAGTGCGGTTGCAGCCAAGAAGACCAGAGAATTCCGTTGTCCTCCTAGGGAACAGATGAACGCAATCCTGAGTTTCAAACATCTTGAAGATATCGATAAGGAGAACTGTCCTTGTGGCGAAGAACTCATCGCTAGGATGAACGGCTTCCACGAAAGTCTCATGGTCCACGTATCTCTAAACGCCCTGCAAGAACCTGATCCTGAGGAGCCCACTGAACCAGAAATAAAGCCGGGGGCCATTAATAAATTATATAGCCTTATAAATACCGTCAAGGAACTAGAAGAGGAACCCAAGACATTAGAGGAACCAGCCAAGAAGACTCCGGAGGAACGTTTCCGGAAAGTACTCATACAGACGATCGTGAATTGGGCGGAGGAATCGCAGATTGAGACTCCCAAGTTAGTCAGGGAGATGTTTAGCCTACTGGTTCGCCAGTATGACGCCGTAGGAGAACTGATCCGAGCTCTCGAAAAGACTTACGTCATCAATGCGAAGACCAAGCAGGACGTGGCCGAGATGTGGGTGGGACTCAGTCAGATCAGAGCCCTGCTCCCGGTGCAAATGAGTCAAGAAGAGGAGGAACTCATGAGGAAAAGGCTTTGGAAACTGGTCAACAACCACACTTTCTTCCAGCATCCAGATCTGATAAGAGTATTGAGGGTACACGAAAACGTGATGGCTGTAATGATGAATACTTTGGGAAGGAGAGCCCAAGCGCAGTCTGATGCTGCACCGAACCAGCCGCTTGCCGAGGATACCAAGGAGAAGGACACTTCGCATGAAATGGTTGTGGCCTGTTGTCGATTCCTCTGCTACTTCTGTCGCACCGGTCGTCAGAATCAAAAAGCCATGTTCGATCACTTTGACTTCTTGCTGGAGAACTCCAATATTCTACTGTCGAGACCTTCGTTGCGAGGTTCGACTCCTTTGGATGTTGCCTACTCCAGTTTGATGGAGAACACGGAATTGGCTTTAGCTTTGAGGGAGCACTATCTTGAGAAAATAGCGGTATACCTTTCTCGTTGTGGACTACAGAGCAACTCTGAGTTAGTGGAAAAGGGGTATCCAGACCTTGGATGGGATCCGGTAGAAGGCGAGAGATATTTGGACTTCCTGAGATTTTGTGTTTGGGTAAATGGTGAAAGCGTAGAAGAAAACGCCAACTTAGTGATCCGCTTGCTAATCAGGCGGCCGGAGTGTCTTGGCCCGGCCCTTCGGGGAGAAGGCGAAGGTCTACTGAAGGCTATTGTGGACGCGAACAAAATGAGCGAAAGGATCGCAGATAGAAGAAAACTAAGAGAGATAGAACAGGAAGGGGATATTAATTTCAGCCATCCACTCCCGGAGTCGGACGACGACGAGGATTACATCGATACTGGAGCGGCCATACTTAACTTCTACTGCACCCTGGTCGATCTGCTGGGGCGCTGTGCTCCGGATGCGGCAGTAATTGCTCTTGGTAAGAACGAGTCGCTTCGGGCCCGTGCCATTCTGCGCTCCTTGGTACCGTTGGAAGATCTTCAAGGAGTGCTCAGTCTTCGGTTCACCCTCAACAATCCCGCTGCCGGTGAAGAGAGACCCAAGTCCGACATGCCATCCGGACTAATCCCGGGACACAAGCAGAGCGTCGGACTTTTCTTAGAACGAGTCTATGGCATCGAGACCCAAGAGCTTTTCTACAAGCTTCTCGAAGAAGCTTTCTTGCCAGACTTGAGAGCTGCCACTATGCTAGACAGGAACGACGGCTGCGAATCGGACATGGCGCTTTCAATGAACCGGTACATCGGGAATTCGATCCTCCCGCTGCTGATCAAACACGCCAACTTCTACAACGAAGCCGAGAACTACGCCAGTCTGCTGGACGCCACGCTGCACACCGTCTACAGATTATCCAAAAACCGCATGCTGACAAAAGGCCAACGTGAGGCTGTCTCCGACTTCTTGGTGGCTCTGACGTCAGCGATGCAGCCCTCCATGCTGTTGAAGCTGCTGAGGAAGCTCACGGTTGACGTCTCGAGACTGTCCGAGTACACCACCGTGGCTCTCAGACTCCTGACGCTGCACTACGAACGTTGCGCCAAGTACTACGGCAGCACTGGTGGGCAGGGAATATACGGAGCATCTTCTGATGAGGAGAAGCGTCTCACCATGATGCTCTTCTCTAACATCTTCGATTCCCTCAGCAAGATGGACTACGAACCCGAGCTGTTTGGGAAAGCTTTACCCTGTCTCATCGCTATAGGCTGTGCTCTACCACCAGACTACTCTCTATCGAAGAATTACGACGATGAATTCTATGGAAAGGAGCAAGCATCAGTAGGCTCCGACAACCCGCAGTACGATCCCCAGCCGATCAACACCTCATCAGTCGCCCTGAACAACGACTTGAACACGATCGTGCAGAAGTTCTCCGAGCATTACCACGACGCCTGGGCCTCCAGGAAAATTGAGAACGGCTGGGTGTACGGCGAGTCTTGGTCAGACAGCCAGAAGACGCATCCACGACTGAAGCCTTACAACATGCTCAATGACTATGAGAAAGAGCGGTACAAAGAACCGGTCCGCGAGTCGCTGAAGGCACTTCTGGCTCTGGGCTGGTCCGTGGAACATTCCGACGTAGACCTGCCCGCCAACAGTCGCGGCTCTGTGCGAAGACAGTCCAAGTCCGGACTGACCGACTCAGCAACCCCTTTCAACTACAACCCTCACCCCGTGGACATGACGAATCTGACGCTGTCCAGAGAAATGCAGAACATGGCCGAGAGACTGGCTGACAACGCACATGACATCTGGGCTAAGAAGAAAAAAGAAGAACTAGTTACTAATGGAGGGGGAATCCATCCTCAACTAGTTCCTTACGACCTCCTAACTGATAAAGAAAAGAAGAAAGACCGAGAACGCTCACAGGAGTTCCTCAAGTACCTCCAATATCAGGGCTATAAGCTGCACAGGCCAAGCAAAATCCCGCAGAGCGACACGGAACAGACCTCTGCCGGAGTGGCAATAGAGCTGAGATTCGCTTACTCGTTGCTAGAAAAGTTGATCCAGTACATAGACAGGGCTACAATCAACATGAAACTCCTGAAGCCATCGACGACGTTCAGTCGTAGAAGCAGCTTCAAGACAAGCACCAGAGATATAAAGTTCTTCTCGAAAGTGGTTCTCCCTCTAATGGAGAAGTACTTCTCGACCCATCGCAACTACTTCATAGCGGTTGCAACTGCCACCAATAATGTGGGAGCCGCGAGCCTTAAAGAGAAAGAAATGGTCGCCGCTTTGTTCTGTAAGCTGGCCAGCCTGCTTCGATCTAGACTAGCAGCTTTTGGCCCCGACGTCCGCATCACCGTTCGCTGTCTCCAAGTCCTCGTCAAGGGCATTGACGCTAAATCTCTGGTCAAAAACTGCCCGGAATTCATTCGGACTTCAATGCTGACCTTTTTCAACAACATGGCCGACGATGTTGGGCACACCATCATTAATTTGCAGGATGGCAAGTACGCGCACCTCCGCGGTACCCATTTGAAAACGTCTACATCTCTTGGATACATTAACGGAGTACAATTACCTGTACTGACTGCTATGTTCGATCACCTAGCGAACTGCGAATACGGATCAGATCTGCTTTTGGACGAAATTCAAGTTGCGTCATACAAGATGCTCGGGTCACTCTACACGTTGGGCACTGATGTAACGCTGACCCACGACCGCAAGTACTTGAAGACGGAGATTGAAAGACACAAGCCTGCTTTGGGTTCGTGTCTGGGCGCTTTCAGTTCAACCTTCCCCGTGGCGTATCTGGAGCCGCATCTCAACAAACACAACCAGTTTTCTCTGCTTAACAGGATCGCTGAGCATTCGCTCGAGGCCCAAGATATAATGGCGAAAATGGAGCAATCTATGCCGACTCTAGAGACGATCTTGAACGAAGTGGACCAATTCGTTGAATCAGACAAGACGTATAATGAAGCGCCGCATATTATCGACGTGGTCCTGCCATTACTGTGCTCTTACCTGCCGTTCTGGTGGGCGCAGGGACCCGACAACGTCACCCCTACTGGAGGGAACCACGTTACCATGGTAACGGCGGAGCACATGAACCAACTCCTCAAGAACGTGCTCAAACTAATCAAAAAGAACATCGGCAATGAAAGCGCCCCGTGGATGACGAGGATCGCCACTTACACCCAGCAGATCATCATCAACAGCTCCGAAGAGTTGCTCAGGGATTCCTTCCTGCCTCTCGCCGAGAGAGTCAGGAAACGAACAGACAATATGTTCCACAAGGAAGAGAGCTTGAGGGGCTTCATAAAGTCCTCGACCGACGACACTTCGCAAGTAGAGTCTCAGATACAAGAAGACTGGCAGTTACTGGTGCGAGACATCTACTCCTTCTATCCGCTTCTCATCAAGTACGTGGACTTGCAGAGGAATCACTGGTTGAGGAATAATGTTCCAGAGGCCGAGGAGCTATACAACCACGTGGCCGAAATCTTCAACATCTGGTCGAAGAGTCAATACTTCTTGAAGGAAGAACAAAACTTTATATCGGCAAACGAAATCGATAATATGGTCTTGATAATGCCAACAGCCACACGCCGAGTCACGGCCGTGGTCGACGGCACGTCGCAAAGTGGTGGGAAGAAAAAGAAGAAGCATCGCGACAAGAAACGTGACAAGGACAAGGAAGTTCAGGCGTCTCTGATGGTCGCCTGTCTGAAGCGGTTGCTGCCGGTAGGACTGAATCTCTTCGCTGGAAGGGAACAGGAACTGGTACAGCACTGCAAGGATAGGTTCCTGAAGAAAATGTCCGAGCATGACGTTGCCGAATTCGCGAAGACCCAGCTGACGCTACCGGATAAAATAGACCCGGCCGACGAGATGTCGTGGCAACACTACCTCTACAGCAAATTAGGGTCGAAAAGCAAGACTGCCATCACTCTGGAGAATGCCGAGAACAAAGCGAAAATCATCGACGACACCGTTGAGAGGATCGTCGCGATGAGCAAAGTGCTCTTCGGATTGCATATGATCGACCATCCGCAACAAATGAGCAAGAACGTTTATCGATCAGTGGTCTCCATACAAAGGAAGAGGGCCGTGATAGCGTGTTTCAGACAGACGTCCCTACATTCGCTGCCGAGACATCGTGCTTGTAACATCTTCGCGAGGACTTATTACGAGCTGTGGCTGGAGGAAGAAAACATCGGACAAGAAGTCATGATTGAGGATTTGACGCAATCGTTCGAGGATGCTGAACTCAAGAAGAGTGATGTGGTAGAGGAGGATGGGAAGCCAGATCCACTGACCCAGTTGGTCACGACCTTCTGCAGGGGAGCTATGACGGAACGGTCCGGAGCCTTGCAGGAAGATCCACTGTACATGTCGTACGCGCATATCATTGCGAAGTCATGCGGAGAAGAGGAGGAGGAAGGAGGCGGAGAGGAGGAGGAGGGAGGAGGAGAAGCGGAAGGGGAAGAGGAAGGTCGGGCCAGTATACACGAGCAAGAAATGGAGAAGCAGAAGCTACTCTTCCACCAGGCGAGGCTCGCCAACAGGGGGGTCGCGGAGATGGTGCTCCTACACATATCTGCGTCCAAGGGGGTGCCCAGTGAAATGGTCATGAAAACGCTACAGCTCGGCATATCCATACTGCGCGGCGGGAACATTGACATACAGATGGGAATGCTGAACCATTTGAAAGACAAGAAAGACGTGGGCTTCTTCACGTCCATAGCTGGCCTCATGAACTCTTGCTCTGTGTTGGATCTGGATGCCTTCGAAAGGAACACTAAGGCTGAAGGTCTCGGGGTGGGGCTGGAGGGAGCCGCCGGCGAAAAGAACATGCACGACGCAGAGTTCACGTGCGCTCTCTTCAGATTCATCCAGCTGACTTGCGAAGGGCACAACTTGGATTGGCAGAACTACCTCCGGACCCAGGCCGGGAACACGACTACCGTGAACGTCGTGATCTGCACTGTGGACTACCTGCTACGTCTCCAGGAGTCCATCATGGACTTCTACTGGCACTATTCGAGCAAGGAACTGATCGACCCGGCCGGTAAAGCGAACTTCTTTAAGGCGATCGGCGTCGCTTCGCAAGTCTTCAACACGCTCACTGAAGTCATCCAGGGACCTTGTACTCAGAACCAGCAGGCCTTAGCCCACTCCAGACTGTGGGACGCTGTGGGAGGGTTTCTCTTCCTGTTCTCGCACATGCAGGACAAGCTGTCGAAGCACTCGTCACAAGTGGACCTGCTGAAGGAGCTACTCAATTTGCAGAAGGACATGATCACCATGATGCTTTCGATGCTCGAAGGAAACGTCGTCAATGGTACCATCGGTAAGCAGATGGTGGACACATTAGTAGAGTCGGCTTCAAACGTGGAACTGATCCTCAAGTACTTCGACATGTTCCTGAAGCTGAAGGACTTGACCTCTAGCGCCAGTTTCCAAGAAATCGACGCCAATAACGACGGCTGGGTCCTGCCGAAAGACTTCAAAGAGAAGATGGAACAGCAAAAGAGTTACACGCCCGAAGAGATAGAGTTCTTACTCGCTTGCTGCGAGACGAACCACGACGGTAAACTTGACTACGTGGGCTTCTGCGACCGTTTCCACGAACCGGCCAAAGAAATCGGCTTCAACCTTGCCGTACTGCTGACCAACCTCTCGGAGCACATGCCCAACGAACCAAGATTGGCCCGTTTCCTGGAAACAGCTGGCTCGGTGCTGAACTACTTCGAGCCATTCCTCGGCCGCATCGAGATCATGGGTGGATCGAAGCGCATCGAACGAGTCTACTTTGAGATCAAAGAATCTAATATTGAACAGTGGGAGAAGCCGCAGATCAAGGAATCAAAGCGCGCGTTTTTCTACAGCATCGTAACCGAAGGCGGCGACAAGGAGAAGCTGGAAGCGTTCGTGAACTTCTGCGAGGACGCCATCTTTGAGATGACCCACGCGTCGGGTCTGATGGCCGCTTCGGACGACACCGCCGGCGGACCTAAGAACAGGGAGGCCAGCTACATGTACATGGGAGACGACGATGATGATCGTGCCGGCAAGGATCCGTTCCGTCGCGGCATCCAATCAGTGAAAGACGGCATCTCCACGGCGTTCTCGTCTTTATCACCGTCGAACATAAAGGCGAAAATTGCAGATCTACAGCAAATGCCACCGGCAGAATTGGCCGTCGGCTTCTTCAAAATGTTCTTCTATATGTTCTATTACTTGGGCTATGGAGTGCTGGTCGTTGTCAGGTACATATTCGGAGTGCTCCTTGGACTAATGCGGGGCCCGCAGGTGGAGGAGCCACCACCAGAGCCAACTGAAGAGGAGAAAATCGGTCCGAGACATCTGCCAGCTTTACCGCCTGCTGATGACACTGGACAGATGCAAGTCTCGGCCTTCGGTTTGGACATAACTAAAGAAGACAACGGGCAGATCCAGGTGAAGCCGCACGAGTCTCCTACTACATCGACGCCGTCTTCAGGTGAAGAGGCTGACGCGTCTCTCGACGAGGGACTGGAACACTCCGAAGAGCAACGACCACCGTCGCTGATCGACTTATTAGGCGGGGAACAAGCAAAGAAACAAGCTCTAGAGCGCATTGAGGCTCAGGCCGCGCAACAGGCCGCCATGTCGGCGATCGAGGCCGAGAGCAAGAAGGCCGTCCAGGGTCCTGCTTCGTCGTCAGCTCTCTCCCAAGTGGATCTGTCGCAGTACACACGGCGAGCCGTTTCGTTTTTGGCCAGAAACTTCTACAACTTGAAATACGTGGCCCTCGTGCTGGCTTTTTGCATCAACTTCGTGCTTTTGTTTTATAAGGTTTCGACTCTTGATGGCGAAAAAGCCGAAGGTTCGGGCATCGGAGATATCATTGCGGGGTCTGGTTCTGGGCAAGGCTCTGGCAGTGGTGACGTTACATGGTATAGGCCTAAAGTCACCAAATTCAGCGGAGAATGGGCAGCAGCGCCCTCCGAGGATTCCATACTGTCCTTCATATTTCTGCAGCAAAGCATGCATGAGTTGGAAGGAAGGGGCCGGATTTTATGTAAAACAATTTAG
Protein
MDALGGETTFADVQGDNFVPACTLGVGQKARLTYGQDVNTLKYFTTCGLQEGYEPFCVNMKRDVTHWYTKDQPIYENTDEMADTRIDVTRIPAGSETPPCLKISHNTFETMEKANWEFLRLSLPVICHSQFIDESEKARRWVEIKERQQILMKEATEAQIPAHIDQIMRSGFTMNDIKGLHYEDNQEEIQSSKVKRQPSRPPRQQVNGIHRSTSEAEMAKYELGAQTLAPDEKKDKRGRSPFKFFKSKRAESSDRAKIRKSKTPDPFSDTELSPDRGTKRPNPQIKVSQPNQRYNNGTQPRASRPNLYGSQSGLNMATPTQERKQLMTTTNLSAAATETVGNEIFDSECLKLINEYFYGVRIFPGQDPTHVYIGWVTTQYHLHSKDFNQNKVMKSSVIITDDYDRVIESVNRQSCYMVRADELYNEVMAEATAKGASQGMFIGCSVDTSTGTVAFTCEGKSTSIKFKMEPETKLFPAIFVEATSKEILQIELGRSPTSLPLSAAVLPTSDKHVTPQFPPRLKVQCLKPHQWARVPNSSLQVHALKLSDIRGWSMLCEDAVSMLALHIPEEDRCIDILELIEMDKLLSFHSHTLTLYAALCYQSNYRAAHALCQHVDQKQLLYAIKSQYMSGPLRQGFYDLLIALHLESHATTMETCKNEFVIPLGPELKVLYDEPDMGHSLRSLQTESVRPQLEMTDITEKSIMDISNLYSPKFPLEVVREFVMQALAEAVETNQVHNRDPVGGSNENLFLPLIKLVDRLLLVGKMRDEDVEKLLIMINPETWDPTFNKEGKDEHRKGLLHMKMAEGAKLQMCYLLQHLNDMQLRHRVESIVAFAHDFVGDLQSDQLRRYTEIKQSDLPSAVAAKKTREFRCPPREQMNAILSFKHLEDIDKENCPCGEELIARMNGFHESLMVHVSLNALQEPDPEEPTEPEIKPGAINKLYSLINTVKELEEEPKTLEEPAKKTPEERFRKVLIQTIVNWAEESQIETPKLVREMFSLLVRQYDAVGELIRALEKTYVINAKTKQDVAEMWVGLSQIRALLPVQMSQEEEELMRKRLWKLVNNHTFFQHPDLIRVLRVHENVMAVMMNTLGRRAQAQSDAAPNQPLAEDTKEKDTSHEMVVACCRFLCYFCRTGRQNQKAMFDHFDFLLENSNILLSRPSLRGSTPLDVAYSSLMENTELALALREHYLEKIAVYLSRCGLQSNSELVEKGYPDLGWDPVEGERYLDFLRFCVWVNGESVEENANLVIRLLIRRPECLGPALRGEGEGLLKAIVDANKMSERIADRRKLREIEQEGDINFSHPLPESDDDEDYIDTGAAILNFYCTLVDLLGRCAPDAAVIALGKNESLRARAILRSLVPLEDLQGVLSLRFTLNNPAAGEERPKSDMPSGLIPGHKQSVGLFLERVYGIETQELFYKLLEEAFLPDLRAATMLDRNDGCESDMALSMNRYIGNSILPLLIKHANFYNEAENYASLLDATLHTVYRLSKNRMLTKGQREAVSDFLVALTSAMQPSMLLKLLRKLTVDVSRLSEYTTVALRLLTLHYERCAKYYGSTGGQGIYGASSDEEKRLTMMLFSNIFDSLSKMDYEPELFGKALPCLIAIGCALPPDYSLSKNYDDEFYGKEQASVGSDNPQYDPQPINTSSVALNNDLNTIVQKFSEHYHDAWASRKIENGWVYGESWSDSQKTHPRLKPYNMLNDYEKERYKEPVRESLKALLALGWSVEHSDVDLPANSRGSVRRQSKSGLTDSATPFNYNPHPVDMTNLTLSREMQNMAERLADNAHDIWAKKKKEELVTNGGGIHPQLVPYDLLTDKEKKKDRERSQEFLKYLQYQGYKLHRPSKIPQSDTEQTSAGVAIELRFAYSLLEKLIQYIDRATINMKLLKPSTTFSRRSSFKTSTRDIKFFSKVVLPLMEKYFSTHRNYFIAVATATNNVGAASLKEKEMVAALFCKLASLLRSRLAAFGPDVRITVRCLQVLVKGIDAKSLVKNCPEFIRTSMLTFFNNMADDVGHTIINLQDGKYAHLRGTHLKTSTSLGYINGVQLPVLTAMFDHLANCEYGSDLLLDEIQVASYKMLGSLYTLGTDVTLTHDRKYLKTEIERHKPALGSCLGAFSSTFPVAYLEPHLNKHNQFSLLNRIAEHSLEAQDIMAKMEQSMPTLETILNEVDQFVESDKTYNEAPHIIDVVLPLLCSYLPFWWAQGPDNVTPTGGNHVTMVTAEHMNQLLKNVLKLIKKNIGNESAPWMTRIATYTQQIIINSSEELLRDSFLPLAERVRKRTDNMFHKEESLRGFIKSSTDDTSQVESQIQEDWQLLVRDIYSFYPLLIKYVDLQRNHWLRNNVPEAEELYNHVAEIFNIWSKSQYFLKEEQNFISANEIDNMVLIMPTATRRVTAVVDGTSQSGGKKKKKHRDKKRDKDKEVQASLMVACLKRLLPVGLNLFAGREQELVQHCKDRFLKKMSEHDVAEFAKTQLTLPDKIDPADEMSWQHYLYSKLGSKSKTAITLENAENKAKIIDDTVERIVAMSKVLFGLHMIDHPQQMSKNVYRSVVSIQRKRAVIACFRQTSLHSLPRHRACNIFARTYYELWLEEENIGQEVMIEDLTQSFEDAELKKSDVVEEDGKPDPLTQLVTTFCRGAMTERSGALQEDPLYMSYAHIIAKSCGEEEEEGGGEEEEGGGEAEGEEEGRASIHEQEMEKQKLLFHQARLANRGVAEMVLLHISASKGVPSEMVMKTLQLGISILRGGNIDIQMGMLNHLKDKKDVGFFTSIAGLMNSCSVLDLDAFERNTKAEGLGVGLEGAAGEKNMHDAEFTCALFRFIQLTCEGHNLDWQNYLRTQAGNTTTVNVVICTVDYLLRLQESIMDFYWHYSSKELIDPAGKANFFKAIGVASQVFNTLTEVIQGPCTQNQQALAHSRLWDAVGGFLFLFSHMQDKLSKHSSQVDLLKELLNLQKDMITMMLSMLEGNVVNGTIGKQMVDTLVESASNVELILKYFDMFLKLKDLTSSASFQEIDANNDGWVLPKDFKEKMEQQKSYTPEEIEFLLACCETNHDGKLDYVGFCDRFHEPAKEIGFNLAVLLTNLSEHMPNEPRLARFLETAGSVLNYFEPFLGRIEIMGGSKRIERVYFEIKESNIEQWEKPQIKESKRAFFYSIVTEGGDKEKLEAFVNFCEDAIFEMTHASGLMAASDDTAGGPKNREASYMYMGDDDDDRAGKDPFRRGIQSVKDGISTAFSSLSPSNIKAKIADLQQMPPAELAVGFFKMFFYMFYYLGYGVLVVVRYIFGVLLGLMRGPQVEEPPPEPTEEEKIGPRHLPALPPADDTGQMQVSAFGLDITKEDNGQIQVKPHESPTTSTPSSGEEADASLDEGLEHSEEQRPPSLIDLLGGEQAKKQALERIEAQAAQQAAMSAIEAESKKAVQGPASSSALSQVDLSQYTRRAVSFLARNFYNLKYVALVLAFCINFVLLFYKVSTLDGEKAEGSGIGDIIAGSGSGQGSGSGDVTWYRPKVTKFSGEWAAAPSEDSILSFIFLQQSMHELEGRGRILCKTI

Summary

Description
Intracellular calcium channel that is required for proper muscle function during embryonic development and may be essential for excitation-contraction coupling in larval body wall muscles.
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development (By similarity).
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development.
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. Required for cellular calcium ion homeostasis. Required for embryonic heart development (By similarity). The calcium channel activity is modulated by formation of heterotetramers with RYR3.
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Contributes to cellular calcium ion homeostasis (By similarity). Plays a role in cellular calcium signaling.
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Plays a role in cellular calcium signaling. Contributes to cellular calcium ion homeostasis. Isoform 2 lacks a predicted transmembrane segment and does not form functional calcium channels by itself; however, it can form tetramers with isoforms that contain the full complement of transmembrane segments and modulate their activity.
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:3722165, PubMed:10388749, PubMed:10097181, PubMed:12732639, PubMed:22036948, PubMed:26245150, PubMed:27662087). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (By similarity). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity).
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:18003898, PubMed:7515481, PubMed:7621815, PubMed:21156754). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain (PubMed:22036948). Required for normal embryonic development of muscle fibers and skeletal muscle (PubMed:7515481). Required for normal heart morphogenesis, skin development and ossification during embryogenesis (PubMed:18003898, PubMed:7515481).
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11316255). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (By similarity). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity).
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (By similarity). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (By similarity). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity).
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules (PubMed:11741831, PubMed:16163667). Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm (PubMed:18268335). Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for normal heart morphogenesis, skin development and ossification during embryogenesis (By similarity).
Subunit
Homotetramer.
Homotetramer. Can also form heterotetramers with RYR3. Identified in a complex composed of RYR2, FKBP1B, PKA catalytic subunit, PRKAR2A, AKAP6, and the protein phosphatases PP2A and PP1. Interacts directly with FKBP1B, PKA, PP1 and PP2A (By similarity). Interacts with FKBP1A and FKBP1B; these interactions may stabilize the channel in its closed state and prevent Ca(2+) leaks. Interacts with CALM and S100A1; these interactions regulate channel activity. Interacts with SELENON (By similarity). In cardiac muscles, identified in a complex composed of FSD2, CMYA5 and RYR2 (By similarity).
Homotetramer. Can also form heterotetramers with RYR1 and RYR3 (By similarity). Interacts with FKBP1A and FKBP1B; these interactions may stabilize the channel in its closed state and prevent Ca(2+) leaks. Interacts with CALM and S100A1; these interactions regulate channel activity. Identified in a complex composed of RYR2, FKBP1B, PKA catalytic subunit, PRKAR2A, AKAP6, and the protein phosphatases PP2A and PP1. Interacts directly with FKBP1B, PKA, PP1 and PP2A. Interacts with SELENON (By similarity). In cardiac muscles, identified in a complex, composed of FSD2, CMYA5 and RYR2 (By similarity).
Homotetramer. Can also form heterotetramers with RYR1 and RYR3. Interacts with CALM and S100A1; these interactions regulate channel activity. Identified in a complex composed of RYR2, FKBP1B, PKA catalytic subunit, PRKAR2A, AKAP6, and the protein phosphatases PP2A and PP1. Interacts directly with FKBP1B, PKA, PP1 and PP2A (By similarity). Interacts with FKBP1A and FKBP1B; these interactions may stabilize the channel in its closed state and prevent Ca(2+) leaks. Interacts with SELENON (By similarity). Identified in a complex, composed of FSD2, CMYA5 and RYR2 (PubMed:28740084).
Homotetramer. Can also form heterotetramers with RYR1 and RYR3. Interacts with FKBP1A and FKBP1B; these interactions may stabilize the channel in its closed state and prevent Ca(2+) leaks. Interacts with CALM and S100A1; these interactions regulate channel activity. Identified in a complex composed of RYR2, FKBP1B, PKA catalytic subunit, PRKAR2A, AKAP6, and the protein phosphatases PP2A and PP1. Interacts directly with FKBP1B, PKA, PP1 and PP2A (By similarity). Interacts with SELENON (PubMed:18713863). In cardiac muscles, identified in a complex, composed of FSD2, CMYA5 and RYR2 (By similarity).
Homotetramer. Heterotetramer with RYR2. Interacts with CALM (By similarity). Interacts with FKBP1A. Interacts with SELENON (By similarity).
Homotetramer. Isoform 2 can form tetramers with isoform 1. Heterotetramer with RYR2. Interacts with FKBP1A. Interacts with CALM. Interacts with SELENON (By similarity).
Homotetramer. Isoform 2 can form tetramers with isoform 1. Heterotetramer with RYR2. Interacts with FKBP1A. Interacts with CALM. Interacts with SELENON (PubMed:18713863).
Homotetramer (PubMed:10097181, PubMed:15908964, PubMed:17027503, PubMed:18621707, PubMed:25470059, PubMed:25517095, PubMed:27662087, PubMed:27573175, PubMed:27468892). Can also form heterotetramers with RYR2 (PubMed:12213830). Identified in a complex composed of RYR1, PDE4D, PKA, FKBP1A and protein phosphatase 1 (PP1). Repeated very high-level exercise decreases interaction with PDE4D and protein phosphatase 1 (PP1) (By similarity). Interacts with CALM; CALM with bound calcium inhibits the RYR1 channel activity (PubMed:10601232, PubMed:11562475, PubMed:17027503). Interacts with S100A1 (By similarity). Interacts with FKBP1A; this stabilizes the closed conformation of the channel (PubMed:7669046, PubMed:10603943, PubMed:26245150, PubMed:25517095, PubMed:27468892). Interacts with CACNA1S; interaction with CACNA1S is important for activation of the RYR1 channel (PubMed:10388749). Interacts with CACNB1 (PubMed:21320436). Interacts with TRDN and ASPH; these interactions stimulate RYR1 channel activity (PubMed:9737879, PubMed:19398037). Interacts with SELENON (PubMed:18713863). Interacts with scorpion calcins (AC P0DPT1; AC P0DM30; AC A0A1L4BJ42; AC P59868; AC P60254; AC B8QG00; AC L0GBR1; AC P60252; AC P60253) (PubMed:27114612).
Homotetramer (PubMed:18003898). Can also form heterotetramers with RYR2 (By similarity). Identified in a complex composed of RYR1, PDE4D, PKA, FKBP1A and protein phosphatase 1 (PP1) (PubMed:18268335). Repeated very high-level exercise decreases interaction with PDE4D and protein phosphatase 1 (PP1) (PubMed:18268335). Interacts with CALM; CALM with bound calcium inhibits the RYR1 channel activity (By similarity). Interacts with S100A1 (By similarity). Interacts with FKBP1A; this stabilizes the closed conformation of the channel. Interacts with CACNA1S; interaction with CACNA1S is important for activation of the RYR1 channel. Interacts with CACNB1. Interacts with TRDN and ASPH; these interactions stimulate RYR1 channel activity. Interacts with SELENON (By similarity). Interacts with scorpion calcins (AC P0DPT1; AC P0DM30; AC A0A1L4BJ42; AC P59868; AC P60254; AC B8QG00; AC L0GBR1; AC P60252; AC P60253) (By similarity).
Homotetramer. Can also form heterotetramers with RYR2 (By similarity). Identified in a complex composed of RYR1, PDE4D, PKA, FKBP1A and protein phosphatase 1 (PP1). Repeated very high-level exercise decreases interaction with PDE4D and protein phosphatase 1 (PP1) (By similarity). Interacts with CALM; CALM with bound calcium inhibits the RYR1 channel activity (By similarity). Interacts with S100A1 (By similarity). Interacts with FKBP1A; this stabilizes the closed conformation of the channel. Interacts with CACNA1S; interaction with CACNA1S is important for activation of the RYR1 channel. Interacts with CACNB1. Interacts with TRDN and ASPH; these interactions stimulate RYR1 channel activity. Interacts with SELENON (By similarity). Interacts with scorpion calcins (AC P0DPT1; AC P0DM30; AC A0A1L4BJ42; AC P59868; AC P60254; AC B8QG00; AC L0GBR1; AC P60252; AC P60253) (By similarity).
Homotetramer. Can also form heterotetramers with RYR2 (By similarity). Identified in a complex composed of RYR1, PDE4D, PKA, FKBP1A and protein phosphatase 1 (PP1) (PubMed:18268335). Repeated very high-level exercise decreases interaction with PDE4D and protein phosphatase 1 (PP1) (PubMed:18268335). Interacts with CALM; CALM with bound calcium inhibits the RYR1 channel activity (PubMed:18650434). Interacts with S100A1 (PubMed:18650434). Interacts with FKBP1A; this stabilizes the closed conformation of the channel. Interacts with CACNA1S; interaction with CACNA1S is important for activation of the RYR1 channel. Interacts with CACNB1. Interacts with TRDN and ASPH; these interactions stimulate RYR1 channel activity. Interacts with SELENON (By similarity). Interacts with scorpion calcins (AC P0DPT1; AC P0DM30; AC A0A1L4BJ42; AC P59868; AC P60254; AC B8QG00; AC L0GBR1; AC P60252; AC P60253) (By similarity).
Miscellaneous
Channel activity is modulated by the alkaloid ryanodine that binds to the open Ca-release channel with high affinity and maintains the channel in an open conformation. The calcium release channel is modulated by calcium ions, magnesium ions, ATP and calmodulin (By similarity).
Channel activity is modulated by the alkaloid ryanodine that binds to the open calcium-release channel with high affinity. At low concentrations, ryanodine maintains the channel in an open conformation. High ryanodine concentrations inhibit channel activity. Channel activity is regulated by calmodulin (CALM). The calcium release is activated by elevated cytoplasmic calcium levels in the micromolar range, by caffeine and adenine nucleotides, such as AMP and ATP. Inhibited by Mg(2+) and ruthenium red (By similarity).
Channel activity is modulated by the alkaloid ryanodine that binds to the open calcium-release channel with high affinity. At low concentrations, ryanodine maintains the channel in an open conformation. High ryanodine concentrations inhibit channel activity. Channel activity is regulated by calmodulin (CALM). The calcium release is activated by elevated cytoplasmic calcium levels in the micromolar range, by caffeine and adenine nucleotides, such as AMP and ATP. Inhibited by Mg(2+) and ruthenium red.
Coexpression of normal and mutant Thr-4897 RYR1 in a 1:1 ratio produces RYR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca(2+) release are reduced by 67%. Binding of [3H]ryanodine indicates that the heterozygous channel is activated by Ca(2+) concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells shows a significantly increased resting cytoplasmic Ca(2+) level and a significantly reduced luminal Ca(2+) level. These data indicated a leaky channel, possibly caused by a reduction in the Ca(2+) concentration required for channel activation.
Coexpression of normal and mutant Thr-4898 RYR1 in a 1:1 ratio produces RYR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca(2+) release are reduced by 67%. Binding of [3H]ryanodine indicates that the heterozygous channel is activated by Ca(2+) concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells shows a significantly increased resting cytoplasmic Ca(2+) level and a significantly reduced luminal Ca(2+) level. These data indicated a leaky channel, possibly caused by a reduction in the Ca(2+) concentration required for channel activation. Comparison with 2 other coexpressed mutant/normal channels suggests that the Thr-4898 mutation produces one of the most abnormal RYR1 channels that has been investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected CCD individuals.
Similarity
Belongs to the ryanodine receptor (TC 1.A.3.1) family.
Belongs to the ryanodine receptor (TC 1.A.3.1) family. RYR2 subfamily.
Belongs to the ryanodine receptor (TC 1.A.3.1) family. RYR3 subfamily.
Belongs to the ryanodine receptor (TC 1.A.3.1) family. RYR1 subfamily.
Keywords
Alternative splicing   Calcium   Calcium channel   Calcium transport   Complete proteome   Developmental protein   Ion channel   Ion transport   Ligand-gated ion channel   Membrane   Phosphoprotein   Receptor   Reference proteome   Repeat   Sarcoplasmic reticulum   Transmembrane   Transmembrane helix   Transport   3D-structure   Calmodulin-binding   Cardiomyopathy   Coiled coil   Disease mutation   Polymorphism   Endoplasmic reticulum   Microsome   ATP-binding   Direct protein sequencing   Metal-binding   Nucleotide-binding   S-nitrosylation  
Feature
chain  Ryanodine receptor
splice variant  In isoform C and isoform D.
sequence variant  Found in a patient with short-coupled polymorphic ventricular tachycardia at rest; unknown pathological significance; no effect on cytosolic Ca(2+) activation.
Pubmed
8276118    10731132    12537572    1338312    10811919    18327897    + More
20445169    20471962    18755143    20431056    22673903    18650434    8809036    11159936    16710414    9148749    9607712    10830164    20056922    11805843    19482609    21472222    20961976    25372681    11208676    11157710    12093772    12106942    14571276    15466642    15046072    15046073    15544015    16188589    25356899    17984046    24793461    25463374    26405799    27733687    10473538    19468303    9628868    7876312    7621815    17693412    21183079    21098440    20214899    28740084    19913485    21645850    22705209    23978697    26245150    2380170    8841406    1645727    12213830    18713863    9395096    9515741    16572171    7523185    8276408    7556644    12354756    22100703    8702664    16141072    7635066    9582272    11717163    11500519    17596299    19503748    1330694    9305876    12471029    9614063    10358090    16176801    16274254    2725677    2298749    10601232    3722165    8380342    7669046    10603943    9737879    10388749    10097181    11562475    12486242    12732639    19398037    21320436    22036948    27114612    15908964    17027503    18621707    19541610    21048710    22913516    23422674    25370123    25470059    25517095    27662087    27573175    27468892    18003898    7515481    15489334    7724570    18268335    21156754    15057822    10444400    11316255    16641100    1329581    8288238    2174405    1354642    8220422    8661021    15057824    1639409    1774074    7751854    18318008    22752422    8220423    7829078    8012359    7849712    7881417    9066328    9389851    9138151    9497245    9450902    10484775    10051009    10823104    10888602    10612851    11113224    11389482    11575529    11709545    11741831    11241852    11525881    12059893    12411788    12112081    12066726    12208234    12123492    11928716    12136074    12883402    14670767    12937085    12709367    12566385    12719381    12565913    15448513    14732627    14985404    15221887    16163667    16380615    17204054    17226826    18312400    18253926    19191329    19685112    20142353    20583297    20681998    21674524    24013571    23558838    24561095    26381711    26115329    27586648    26631338    27616680    27234031   
EMBL
D17389    AE013599    Z18536    AAF59036.2    EU346200    AB204523    + More
X98330    AJ300340    AJ300341    AJ300342    AJ300343    AJ300347    AJ300349    AJ300351    AJ300353    AJ300355    AJ300364    AJ300363    AJ300362    AJ300361    AJ300360    AJ300359    AJ300358    AJ300357    AJ300356    AJ300373    AJ300372    AJ300371    AJ300370    AJ300369    AJ300368    AJ300367    AJ300366    AJ300365    AJ300382    AJ300381    AJ300380    AJ300379    AJ300378    AJ300377    AJ300376    AJ300375    AJ300374    AJ300399    AJ300398    AJ300397    AJ300396    AJ300395    AJ300394    AJ300393    AJ300392    AJ300391    AJ300416    AJ300415    AJ300414    AJ300413    AJ300412    AJ300411    AJ300410    AJ300409    AJ300408    AJ300433    AJ300432    AJ300431    AJ300430    AJ300429    AJ300428    AJ300427    AJ300426    AJ300425    AJ300444    AJ300443    AJ300442    AJ300441    AJ300440    AJ300439    AJ300438    AJ300437    AJ300436    AJ300435    AJ300434    AJ300424    AJ300423    AJ300422    AJ300421    AJ300420    AJ300419    AJ300418    AJ300417    AJ300407    AJ300406    AJ300405    AJ300404    AJ300403    AJ300402    AJ300401    AJ300400    AJ300390    AJ300389    AJ300388    AJ300387    AJ300386    AJ300385    AJ300384    AJ300383    AJ300354    AJ300352    AJ300350    AJ300348    AJ300346    AJ300345    AJ300344    AL365332    AL356773    AL359924    AL391809    AL442065    AL445473    AL513130    Y08218    X91869    AJ002511    AF295105    AC131329    AC159208    CT010468    CT572985    AB012003    X83933    D38217    M59743    AB001025    AJ001515    AC010809    AC011938    AC055874    AC067793    AC087638    AJ002512    X74269    X74270    AL929348    AL672250    AL691423    AL732316    BX649564    D84237    AF111166    AK132464    X83934    U23756    D38218    X68650    X15209    X15750    AY268935    AC164564    AC165142    D21798    D21796    D21797    AJ308737    BC051248    BC055487    X83932    U23754    D38216    AF112256    AF130879    AF011788    X62880    X68247    X69465    M32501    J05200    U48508    U48449    U48450    U48451    U48452    U48453    U48454    U48455    U48456    U48457    U48458    U48459    U48460    U48461    U48462    U48463    U48464    U48465    U48466    U48467    U48468    U48469    U48470    U48471    U48472    U48473    U48474    U48475    U48476    U48477    U48478    U48479    U48480    U48481    U48482    U48483    U48484    U48485    U48486    U48487    U48488    U48489    U48490    U48491    U48492    U48493    U48494    U48495    U48496    U48497    U48498    U48499    U48500    U48501    U48502    U48503    U48504    U48505    U48506    U48507    AC067969    AC005933    AC011469    M91455    S78717    S77392   
Pfam
PF02815   MIR        + More
PF01365   RYDR_ITPR
PF08709   Ins145_P3_rec
PF00520   Ion_trans
PF06459   RR_TM4-6
PF02026   RyR
PF08454   RIH_assoc
PF00622   SPRY
PF13833   EF-hand_8
Interpro
IPR036300   MIR_dom_sf        + More
IPR001870   B30.2/SPRY       
IPR035761   SPRY1_RyR       
IPR009460   Ryanrecept_TM4-6       
IPR014821   Ins145_P3_rcpt       
IPR000699   RIH_dom       
IPR013662   RIH_assoc-dom       
IPR035910   RyR/IP3R_RIH_dom_sf       
IPR035762   SPRY3_RyR       
IPR011992   EF-hand-dom_pair       
IPR013320   ConA-like_dom_sf       
IPR005821   Ion_trans_dom       
IPR013333   Ryan_recept       
IPR003877   SPRY_dom       
IPR016093   MIR_motif       
IPR003032   Ryanodine_rcpt       
IPR035764   SPRY2_RyR       
IPR002048   EF_hand_dom       
IPR016024   ARM-type_fold       
IPR033215   RyR1       
SUPFAM
SSF47473   SSF47473        + More
SSF100909   SSF100909       
SSF82109   SSF82109       
SSF49899   SSF49899       
SSF48371   SSF48371       
PDB
5GOA     E-value=0,     Score=6409

Ontologies

GO
GO:0007275   GO:0005219   GO:0006936   GO:0060047   GO:0035206   GO:0016021   GO:0006816   GO:0033017   GO:0072347   GO:0005886   GO:0031672   GO:0097110   GO:0005262   GO:0019722   GO:0005509   GO:0042383   GO:0006874   GO:0043005   GO:0016529   GO:0070296   GO:0048763   GO:0005783   GO:0031234   GO:0034704   GO:0051592   GO:0042493   GO:0015278   GO:0032026   GO:0005790   GO:0007584   GO:0005737   GO:0051480   GO:0034220   GO:0051481   GO:0003143   GO:0070588   GO:0005635   GO:0051209   GO:0071313   GO:0030659   GO:0071421   GO:0030018   GO:0005516   GO:0032991   GO:0014808   GO:1903779   GO:0014850   GO:0051284   GO:0014701   GO:0060402   GO:0003300   GO:0098907   GO:0071872   GO:0034237   GO:0098735   GO:0035584   GO:0055117   GO:0098910   GO:0034236   GO:0060070   GO:0035994   GO:0001666   GO:0031000   GO:1901896   GO:0097050   GO:0005513   GO:0098904   GO:0086005   GO:0019899   GO:0086064   GO:0010460   GO:0043924   GO:0060048   GO:0010882   GO:0042802   GO:0016020   GO:0002027   GO:0044325   GO:0072599   GO:0010881   GO:0051775   GO:0098911   GO:0030509   GO:0043621   GO:0086029   GO:0003220   GO:0060401   GO:0019901   GO:0030017   GO:0097159   GO:0043231   GO:0008144   GO:0071318   GO:0048471   GO:0051289   GO:0071277   GO:0071286   GO:0030314   GO:0006941   GO:0048741   GO:1990425   GO:0005524   GO:0043931   GO:0003151   GO:0035381   GO:0043588   GO:0015643   GO:0031301   GO:0097718   GO:0005245   GO:0014802   GO:0006937   GO:0005938   GO:0030315   GO:0031674   GO:0002020   GO:0032355   GO:0070062   GO:0005887   GO:0005515   GO:0005507   GO:0004713   GO:0016491   GO:0015930  

Topology

Subcellular location
Sarcoplasmic reticulum membrane   The number of predicted transmembrane domains varies between orthologs, but both N-terminus and C-terminus seem to be cytoplasmic.   With evidence from 1 publications.
Membrane   The number of predicted transmembrane domains varies between orthologs, but both N-terminus and C-terminus seem to be cytoplasmic.   With evidence from 1 publications.
Sarcoplasmic reticulum   The number of predicted transmembrane domains varies between orthologs, but both N-terminus and C-terminus seem to be cytoplasmic.   With evidence from 3 publications.
Microsome membrane   The number of predicted transmembrane domains varies between orthologs, but both N-terminus and C-terminus seem to be cytoplasmic.   With evidence from 2 publications.
Length:
3547
Number of predicted TMHs:
2
Exp number of AAs in TMHs:
44.06194
Exp number, first 60 AAs:
0
Total prob of N-in:
0.00001
outside
1  -  3263
TMhelix
3264  -  3286
inside
3287  -  3444
TMhelix
3445  -  3467
outside
3468  -  3547
 
 

Population Genetic Test Statistics

Pi
267.648687
Theta
177.328796
Tajima's D
1.672083
CLR
0.109145
CSRT
0.822308884555772
Interpretation
Uncertain
Copyright@ 2018-2023    Any Comments and suggestions mail to:zhuzl@cqu.edu.cn   渝ICP备19006517号

渝公网安备 50010602502065号